### Unit 2

#### Mobile radio propagation

#### Department of Electronics and Communication Engineering

### Large-scale small-scale propagation





### Models are Specialized

- Refraction, diffraction and scattering
- Different scales
  - Large scale (averaged over meters)
  - Small scale (order of wavelength)
- Different environmental characteristics
  - Outdoor, indoor, land, sea, space, etc.
- Different application areas
  - macrocell (2km), microcell(500m), picocell
- Chapter 2
- Some figures in the slides from Rappaport book



### **Radio Propagation Mechanisms**

- Refraction
  - Conductors & Dielectric materials (refraction)
  - Propagation wave impinges on an object which is large as compared to wavelength
    - e.g., the surface of the Earth, buildings, walls, etc.
- Diffraction
  - Fresnel zones
  - Radio path between transmitter and receiver obstructed by surface with sharp irregular edges
  - Waves bend around the obstacle, even when LOS (line of sight) does not exist
- Scattering
  - Objects smaller than the wavelength of the propagation wave
    - e.g. foliage, street signs, lamp posts
  - "Clutter" is small relative to wavelength



θ

 $\theta_r$ 

 $\theta_t$ 

- Perfect conductors reflect with no attenuation
  - Like light to the mirror
- Dielectrics reflect a fraction of incident energy
  - "Grazing angles" reflect max\*
  - Steep angles transmit max\*
  - Like light to the water
- Reflection induces 180° phase shift
  - Why? See yourself in the mirror



### Classical 2-ray ground bounce model

• One line of sight and one ground bound



Figure 4.7 Two-ray ground reflection model.



## Method of image



Figure 4.8 The method of images is used to find the path difference between the line-of-sight and the ground reflected paths.





Figure 4.9 Phasor diagram showing the electric field components of the line-of-sight, ground reflected, and total received E-fields, derived from Equation (4.45).



## Simplified model

- Far field simplified model
- Example 2.2

$$P_r = P_t G_t G_r \frac{h_t^2 h_r^2}{d^4}$$

Path loss is due to the decay of the intensity of a propagating radio wave. In the simulations, we use the two-slope path-loss model [32], [33] to obtain the average received power as a function of distance. According to this model, the average path loss is given by

$$G = \frac{K_0}{r^{b_1} \left(1 + \frac{r\lambda_c}{(4h_b h_m)}\right)^{b_2}} \tag{31}$$

where  $K_0$  is a constant, r is the distance between the mobile user and the base station,  $b_1 = 2$  is the basic path-loss exponent,  $b_2 = 2$  is the additional path loss component,  $h_b$  is the base station antenna height,  $h_m$  is the mobile antenna height, and  $\lambda_c$ is the wavelength of the carrier frequency. We assume that the



- Diffraction occurs when waves hit the edge of an obstacle
  - "Secondary" waves propagated into the shadowed region
  - Water wave example
  - Diffraction is caused by the propagation of secondary wavelets into a shadowed region.
  - Excess path length results in a phase shift
  - The field strength of a diffracted wave in the shadowed region is the vector sum of the electric field components of all the secondary wavelets in the space around the obstacle.
  - Huygen's principle: all points on a wavefront can be considered as point sources for the production of secondary wavelets, and that these wavelets combine to produce a new wavefront in the direction of propagation.



#### **Diffraction geometry**

• Fresnel-Kirchoff distraction parameters,



(c) Equivalent knife-edge geometry where the smallest height (in this case  $h_r$ ) is subtracted from all other heights.



#### **Fresnel Screens**

- Fresnel zones relate phase shifts to the positions of obstacles
- A rule of thumb used for line-of-sight microwave links 55% of the first Fresnel zone is kept clear.



Figure 4.11 Concentric circles which define the boundaries of successive Fresnel zones.



- Bounded by elliptical loci of constant delay
- Alternate zones differ in phase by 180°
  - Line of sight (LOS) corresponds to 1st zone
  - If LOS is partially blocked, 2nd zone can destructively interfere (diffraction loss)
- How much power is propagated this way?
  - 1st FZ: 5 to 25 dB below

free space prop.





#### Knife-edge diffraction loss



Figure 4.14 Knife-edge diffraction gain as a function of Fresnel diffraction parameter v.



- Rough surfaces
  - Lamp posts and trees, scatter all directions
  - <u>Critical height</u> for bumps is  $f(\lambda, incident angle)$ ,
  - Smooth if its minimum to maximum protuberance h is less than critical height.
  - Scattering loss factor modeled with Gaussian distribution,
- Nearby metal objects (street signs, etc.)
  - Usually modeled statistically
- Large distant objects
  - Analytical model: Radar Cross Section (RCS)
  - Bistatic radar equation,



#### Impulse Response Model of a Time Variant Multipath Channel



Figure 5.4 An example of the time varying discrete-time impulse response model for a multipath radio channel. Discrete models are useful in simulation where modulation data must be convolved with the channel impulse response [Tra02].



## Transition

- Stochastic large scale models:
  - Log-distance path loss model
  - log-normal shadowing
- Outdoor propagation models
- Indoor propagation models



## Three scales of path model

• Figure 2.1





### **Propagation Models**

- Large scale models predict behavior averaged over distances  $>> \lambda$ 
  - Function of distance & significant environmental features, roughly frequency independent
  - Breaks down as distance decreases
  - Useful for modeling the range of a radio system and rough capacity planning,
  - Experimental rather than the theoretical for previous three models
  - Path loss models, Outdoor models, Indoor models
- Small scale (fading) models describe signal variability on a scale of  $\lambda$ 
  - Multipath effects (phase cancellation) dominate, path attenuation considered constant
  - Frequency and bandwidth dependent
  - Focus is on modeling "Fading": rapid change in signal over a short distance or length of time.



# Free space propagation model

- Assumes far-field (Fraunhofer region)
  - d >> D and  $d >> \lambda$ , where
    - D is the largest linear dimension of antenna
    - $\lambda$  is the carrier wavelength
- No interference, no obstructions
- Effective isotropic radiated power
- Effective radiated power
- Path loss
- Fraunhofer region/far field
- In log scale
- Equation (2.9)
- Example 2.1



$$PL(d) = PL(d_0) + \beta \left[\frac{d}{d_0}\right]_{dB}$$

- Path Loss is a measure of attenuation based only on the distance to the transmitter
- Free space model only valid in far-field;
  - Path loss models typically define a "close-in" point  $d_0$  and reference other points from there:

$$P_{r}(d) = P_{r}(d_{0}) \left(\frac{d_{0}}{d}\right)^{2} PL(d) = [P_{r}(d)]_{dB} = PL(d_{0}) + 2\left[\frac{d}{d_{0}}\right]_{dB}$$

- Log-distance generalizes path loss to account for other environmental factors  $PL(d) = PL(d_0) + \beta \left| \frac{d}{d_0} \right|$ 
  - Choose a  $d_0$  in the far field.
  - Measure  $PL(d_0)$  or calculate Free Space Path Loss.
  - Take measurements and derive  $\beta$  empirically.



#### Table 4.2 Path Loss Exponents for Different Environments

| Environment                   | Path Loss Exponent, <i>n</i> |
|-------------------------------|------------------------------|
| Free space                    | 2                            |
| Urban area cellular radio     | 2.7 to 3.5                   |
| Shadowed urban cellular radio | 3 to 5                       |
| In building line-of-sight     | 1.6 to 1.8                   |
| Obstructed in building        | 4 to 6                       |
| Obstructed in factories       | 2 to 3                       |

ነ

### Log-Normal Shadowing Model

- Shadowing occurs when objects block LOS between transmitter and receiver
- A simple statistical model can account for unpredictable "shadowing"
  - PL(d)(dB)=PL(d)+X0,
  - Add a 0-mean Gaussian RV to Log-Distance PL
  - Variance  $\sigma$  is usually from 3 to 12.
  - Reason for Gaussian



#### Measured large-scale path loss

- Determine n and  $\sigma$  by mean and variance
- All Measurement Locations n=4**Basic of Gaussian** 140 n=: PA Bida. Stuttgart n=3 Distribution 130 Dusseldorf Bank Bldg. Kronberg Hamburg 120 Path Loss (dB) n=2 110 Example 2.3 100 Example 2.4 n=1 90 n=2.7 80  $\sigma = 11.8 \text{ dB}$ 70 2 3 2 4 3 4 0.1 10 T-R Separation (km)

**Figure 4.17** Scatter plot of measured data and corresponding MMSE path loss model for many cities in Germany. For this data, n = 2.7 and  $\sigma = 11.8$  dB [from [Sei91] © IEEE].



# Okumura Model

- It is one of the most widely used models for signal prediction in urban areas, and it is applicable for frequencies in the range 150 MHz to 1920 MHz
- Based totally on measurements (not analytical calculations)
- Applicable in the range: 150MHz to ~ 2000MHz, 1km to 100km T-R separation, Antenna heights of 30m to 100m

$$L_{50}(dB) = L_F + A_{mu}(f,d) - G(h_{re}) - G(h_{te}) - G_{AREA}$$

#### Where

 $L_{50}$  is the median path loss (50%)

 $L_F$  is the free space path loss

 $A_{mu}(f,d)$  is the median attenuation relative to free space

 $G(h_{re}), G(h_{te})$  are antenna height gain factors

 $G_{\mbox{\tiny AREA}}$  is the gain due to the type of environment



## Okumura Model

- The major disadvantage with the model is its low response to rapid changes in terrain, therefore the model is fairly good in urban areas, but not as good in rural areas.
- Common standard deviations between predicted and measured path loss values are around 10 to 14 dB.

• G(hre):  

$$G(h_{te}) = 20 \log \left(\frac{h_{te}}{200}\right) \quad 1000 \text{m} > h_{te} > 30 \text{ m}$$

$$G(h_{re}) = 10 \log \left(\frac{h_{re}}{3}\right) \quad h_{re} \le 3 \text{ m}$$

$$G(h_{re}) = 20 \log \left(\frac{h_{re}}{3}\right) \quad 10 \text{m} > h_{re} > 3 \text{ m}$$





Figure 4.24 Correction factor, G<sub>AREA</sub>, for different types of terrain [from [Oku68] © IEEE].



## Hata Model

- Empirical formulation of the graphical data in the Okamura model. Valid 150MHz to 1500MHz, Used for cellular systems
- The following classification was used by Hata:
  - $L_{dB} = A + B \log d E$ •Urban area  $L_{dB} = A + B \log d - C$ •Suburban area  $L_{dB} = A + B \log d - D$ Open area  $A = 69.55 + 26.16 \log f - 13.82 h_{\rm h}$  $B = 44.9 - 6.55 \log h_{h}$  $C = 2(\log(f/28))^2 + 5.4$  $D = 4.78 \log(f / 28)^2 + 18.33 \log f + 40.94$  $E = 3.2(\log(11.75h_m))^2 - 4.97$  for large cities,  $f \ge 300MHz$  $E = 8.29(\log(1.54h_m))^2 - 1.1$  for large cities, f < 300MHz $E = (1.11 \log f - 0.7)h_m - (1.56 \log f - 0.8)$  for medium to small cities



## **PCS Extension of Hata Model**

- COST-231 Hata Model, European standard
- Higher frequencies: up to 2GHz
- Smaller cell sizes
- Lower antenna heights

$$L_{dB} = F + B \log d - E + G$$
  

$$F = 46.3 + 33.9 \log f - 13.82 \log h_b \quad \text{f} > 1500 \text{MHz}$$
  

$$G = \frac{3}{0} \text{ Metropolitan centers}$$
  

$$G = \frac{3}{0} \text{ Medium sized city and suburban areas}$$



# Indoor Propagation Models

- The distances covered are much smaller
- The variability of the environment is much greater
- Key variables: layout of the building, construction materials, building type, where the antenna mounted, ...etc.
- In general, indoor channels may be classified either as LOS or OBS with varying degree of clutter
- The losses between floors of a building are determined by the external dimensions and materials of the building, as well as the type of construction used to create the floors and the external surroundings.
- Floor attenuation factor (FAF)



### Partition losses between floors

**Table 4.4**Total Floor Attenuation Factor and Standard Deviation  $\sigma$  (dB) for ThreeBuildings. Each Point Represents the Average Path Loss Over a 20 $\lambda$  MeasurementTrack [Sei92a]

| Building     | 915 MHz<br>FAF<br>(dB) | σ <b>(dB)</b> | Number of<br>locations | 1900<br>MHz<br>FAF (dB) | σ <b>(dB)</b> | Number<br>of<br>locations |
|--------------|------------------------|---------------|------------------------|-------------------------|---------------|---------------------------|
| Walnut Creek | (00)                   | 0 (00)        | locations              |                         | 0 (02)        | locations                 |
| One Floor    | 33.6                   | 3.2           | 25                     | 31.3                    | 4.6           | 110                       |
| Two Floors   | 44.0                   | 4.8           | 39                     | 38.5                    | 4.0           | 29                        |
| SF PacBell   |                        |               |                        |                         |               |                           |
| One Floor    | 13.2                   | 9.2           | 16                     | 26.2                    | 10.5          | 21                        |
| Two Floors   | 18.1                   | 8.0           | 10                     | 33.4                    | 9.9           | 21                        |
| Three Floors | 24.0                   | 5.6           | 10                     | 35.2                    | 5.9           | 20                        |
| Four Floors  | 27.0                   | 6.8           | 10                     | 38.4                    | 3.4           | 20                        |
| Five Floors  | 27.1                   | 6.3           | 10                     | 46.4                    | 3.9           | 17                        |
| San Ramon    |                        |               |                        |                         |               |                           |
| One Floor    | 29.1                   | 5.8           | 93                     | 35.4                    | 6.4           | 74                        |
| Two Floors   | 36.6                   | 6.0           | 81                     | 35.6                    | 5.9           | 41                        |
| Three Floors | 39.6                   | 6.0           | 70                     | 35.2                    | 3.9           | 27                        |



#### Partition losses between floors

**Table 4.5**Average Floor Attenuation Factor in dB for One, Two, Three, and FourFloors in Two Office Buildings [Sei92b]

| Building             | FAF (dB) | σ <b>(dB)</b> | Number of<br>locations |
|----------------------|----------|---------------|------------------------|
| Office Building 1:   |          |               |                        |
| Through One Floor    | 12.9     | 7.0           | 52                     |
| Through Two Floors   | 18.7     | 2.8           | 9                      |
| Through Three Floors | 24.4     | 1.7           | 9                      |
| Through Four Floors  | 27.0     | 1.5           | 9                      |
| Office Building 2:   |          |               |                        |
| Through One Floor    | 16.2     | 2.9           | 21                     |
| Through Two Floors   | 27.5     | 5.4           | 21                     |
| Through Three Floors | 31.6     | 7.2           | 21                     |



# Log-distance Path Loss Model

- The exponent n depends on the surroundings and building type
  - $X_{\sigma}$  is the variable in dB having a standard deviation  $\sigma$ .

**Table 4.6**Path Loss Exponent and Standard Deviation Measuredin Different Buildings [And94]

| Building               | Frequency (MHz) | n   | σ <b>(dB)</b> |
|------------------------|-----------------|-----|---------------|
| Retail Stores          | 914             | 2.2 | 8.7           |
| Grocery Store          | 914             | 1.8 | 5.2           |
| Office, hard partition | 1500            | 3.0 | 7.0           |
| Office, soft partition | 900             | 2.4 | 9.6           |
| Office, soft partition | 1900            | 2.6 | 14.1          |
| Factory LOS            |                 |     |               |
| Textile/Chemical       | 1300            | 2.0 | 3.0           |
| Textile/Chemical       | 4000            | 2.1 | 7.0           |
| Paper/Cereals          | 1300            | 1.8 | 6.0           |
| Metalworking           | 1300            | 1.6 | 5.8           |
| Suburban Home          |                 |     |               |
| Indoor Street          | 900             | 3.0 | 7.0           |
| Factory OBS            |                 |     |               |
| Textile/Chemical       | 4000            | 2.1 | 9.7           |
| Metalworking           | 1300            | 3.3 | 6.8           |

 $PL(d) = PL(d_0) + 10n\log(d/d_0) + X_{\sigma}$ 



### Ericsson Multiple Breakpoint Model





# **Attenuation Factor Model**

- FAF represents a floor attenuation factor for a specified number of building floors.
- PAF represents the partition attenuation factor for a specific obstruction encountered by a ray drawn between the transmitter and receiver in 3-D
- $\alpha$  is the attenuation constant for the channel with units of dB per meter.

 $PL(d) = PL(d_0) + 10n_{SF}\log(d/d_0) + FAF + \sum PAF$ 

 $PL(d) = PL(d_0) + 10n_{MF}\log(d/d_0) + \sum PAF$ 

 $PL(d) = PL(d_0) + 10\log(d/d_0) + \alpha d + FAF + \sum PAF$ 



#### Measured indoor path loss



Figure 4.28 Scatter plot of path loss as a function of distance in Office Building 1 [from [Sei92b] © IEEE].



#### Measured indoor path loss



Figure 4.29 Scatter plot of path loss as a function of distance in Office Building 2 [from [Sei92b] © IEEE].

### Measured indoor path loss

| Table 4.7  | Path Loss Exponent and Standard Deviation for Various |
|------------|-------------------------------------------------------|
| Types of B | uildings [Sei92b]                                     |

|                        | n    | σ ( <b>dB)</b> | Number of<br>locations |
|------------------------|------|----------------|------------------------|
| All Buildings:         |      |                |                        |
| All locations          | 3.14 | 16.3           | 634                    |
| Same Floor             | 2.76 | 12.9           | 501                    |
| Through One Floor      | 4.19 | 5.1            | 73                     |
| Through Two Floors     | 5.04 | 6.5            | 30                     |
| Through Three Floors   | 5.22 | 6.7            | 30                     |
| Grocery Store          | 1.81 | 5.2            | 89                     |
| Retail Store           | 2.18 | 8.7            | 137                    |
| Office Building 1:     |      |                |                        |
| Entire Building        | 3.54 | 12.8           | 320                    |
| Same Floor             | 3.27 | 11.2           | 238                    |
| West Wing 5th Floor    | 2.68 | 8.1            | 104                    |
| Central Wing 5th Floor | 4.01 | 4.3            | 118                    |
| West Wing 4th Floor    | 3.18 | 4.4            | 120                    |
| Office Building 2:     |      |                |                        |
| Entire Building        | 4.33 | 13.3           | 100                    |
| Same Floor             | 3.25 | 5.2            | 37                     |



# Signal Penetration into Buildings

- RF penetration has been found to be a function of frequency as well as height within the building. Signal strength received inside a building increases with height, and penetration loss decreases with increasing frequency.
- Walker's work shows that building penetration loss decrease at a rate of 1.9 dB per floor from the ground level up to the 15<sup>th</sup> floor and then began increasing above the 15<sup>th</sup> floor. The increase in penetration loss at higher floors was attributed to shadowing effects of adjacent buildings.
- Some devices to conduct the signals into the buildings



## **Ray Tracing and Site Specific Modeling**

- Site specific propagation model and graphical information system. Ray tracing. Deterministic model.
- Data base for buildings, trees, etc.
- SitePlanner







### Cell Coverage Area

• Example 2.6 and 2.7



